Math 255A Lecture 21 Notes

Daniel Raban

November 16, 2018

1 Spectral Theory for Compact Operators

1.1 Applications of analytic Fredholm theory

Last time, we proved analytic Fredholm theory, which said that if T(z) is a family of operators in $\mathcal{L}(B_1, B_2)$ that is holomorphic in z (in some domain $\Omega \subseteq \mathbb{C}$) and if $T^{-1}(z_0)$ exists for some $z_0 \in \Omega$, then $\Sigma = \{z \in \Omega : T(z) \text{ is not invertible}\}$ is a discrete subset of Ω .

Example 1.1. Let M be a compact C^{∞} Riemannian manifold (e.g. torus, sphere,etc.). Let $V \in L^{\infty}(M,\mathbb{C})$, and consider the **Schrödinger operator** $P = -\Delta + V : H^2(M) \to L^2(M)$. where $H^2(M) = \{u \in L^2(M) : \partial^{\alpha}u \in M^2(M), |\alpha| \leq 2\}$ is a Sobolev space. What is Spec(P)? We need 2 basic facts (that we will accept without proof).

Proposition 1.1. The inclusion map $H^2(M) \to L^2(M)$ is compact.

Proposition 1.2. For all $x \in \mathbb{C} \setminus \mathbb{R}$, $-\Delta - zI : H^2 \to L^2$ is bijective and

$$\|(-\Delta - zI)^{-1}\|_{\mathcal{L}(L^2, L^2)} \le \frac{1}{\mathrm{Im}(z)}.$$

This second fact follows form the fact that $-\Delta$ is self adjoint. Now observe that

$$P-z = \underbrace{\left(-\Delta + iI\right)}_{\text{bijective}} + \underbrace{B-zI-iI}_{\text{compact}},$$

so P-z is Fredholm of index 0 and is holomorphic in z. We claim that there exists some $z_0 = it$ such that $P - z_0 I : H^2 \to L^2$ is bijective. Write

$$P - z_0 I = -\Delta + V - z_0 I = (I + V(-\Delta - z_0)^{-1})(-\Delta - z_0).$$

To show that $(I + V(-\Delta - z_0)^{-1})$ is invertible, we can make $||V(-\Delta - z_0)^{-1}|| < 1$. So

$$||V(-\Delta - z_0)^{-1}|| \le \frac{||V||_{L^{\infty}}}{|\operatorname{Im}(z_0)|},$$

so we can take z_0 with large enough imaginary part to make this small. By the analytic Fredholm theory, we get $\operatorname{Spec}(P) \subseteq \mathbb{C}$ is discrete and $\operatorname{Spec}(P) \subseteq \{z : |\operatorname{Im}(z)| \leq C\}$. Moreover, the spectrum consists entirely of eigenvalues.

Example 1.2. When operators are not Fredholm, the spectrum may not have eigenvalues. Let $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be $u(x) \mapsto \sin(x)u(x)$. Then $T \in \mathcal{L}(P^2, L^2)$, and $\operatorname{Spec}(T) = [-1, 1]$, while T has no eigenvalues. If $Tu = \lambda u$, for λ in \mathbb{C} , then u = 0 a.e. Take $\lambda \in [-1, 1]$, and show that an estimate of the form $\|u\|_{L^2} \leq C\|(T - \lambda I)u\|_{L^2}$ cannot hold: $m(\underbrace{\{x: |\sin(x) - \lambda| < \varepsilon\}}) > 0$ for all $\varepsilon > 0$. Letting $u = \mathbb{1}_{E_{\lambda,\varepsilon}}/m(E_{\lambda,\varepsilon})^{1/2}$, sending $\varepsilon \to 0$

gives us the conclusion.

1.2 Spectral theory for compact operators

Theorem 1.1 (spectral theory for compact operators). Let B be an infinite dimensional Banach space, and let $T: B \to B$ be compact.

- 1. $0 \in \operatorname{Spec}(T)$.
- 2. If $0 \neq \lambda \in \operatorname{Spec}(T)$, then $\ker(T \lambda I) \neq 0$.
- 3. One of the following occurs:
 - (a) $Spec(T) = \{0\}.$
 - (b) $\operatorname{Spec}(T) \setminus \{0\}$ is a finite set.
 - (c) Spec $(T) \setminus \{0\}$ is a countable set $= \{\lambda_1, \lambda_2, \dots\}$, and $\lambda_n \to 0$.

Proof. These statements are consequences of the results we have already proven.

- 1. This follows from Riesz's theorem.
- 2. If $\lambda \neq 0$; then $T \lambda I = (-\lambda)(I (1/\lambda)T)$ is Fredholm of index 0. If $\lambda \in \operatorname{Spec}(T)$, then $\ker(T \lambda I) \neq \{0\}$.
- 3. Apply the analytic Fredholm theory to $F(\lambda) = (-\lambda)(I (1/\lambda)T)$. $F(\lambda)$ is invertible for large λ . So Spec $(T) \setminus \{0\}$ consists of at most countably many isolated points. \square

Example 1.3. Let $B = L^2(0,1)$, and let $Tf(x) = \int_0^x f(y) dy$ be the **Volterra operator**. T is compact. We claim that $\operatorname{Spec}(T) = \{0\}$. If $\lambda \in \operatorname{Spec}(T) \setminus \{0\}$, then there exists some $f \in L^2$ such that $\int_0^x f(y) dy = \lambda f(x)$. This implies $f(x) = \lambda f'(x)$ with f(0) = 0. So f = 0.

Let $\lambda \in \operatorname{Spec}(T) \setminus \{0\}$, and consider the resolvent of T in a neighborhood of λ . We have the Laurent expansion $(T - (\lambda + z)I)^{-1} = \sum_{j=-N}^{\infty} A_j z^j$ for 0 < |z| small, $1 \le N < \infty$, and $A_j \in \mathcal{L}(B, B)$, where A_{-N}, \ldots, A_{-1} are of finite rank. In complex analysis, the coefficient of z^{-1} is the residue at λ . What is the significance here?

Proposition 1.3. Let $N_{\lambda} = \bigcup_{k=1}^{\infty} \ker(T - \lambda I)^k$ be the generalized eigenspace of T associated to λ . Then $-A_{-1}$ is a projection onto N_{λ} . So N_{λ} is finite dimensional.

We will prove this next time.